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Abstract. We formulate a learning algorithm for online learning in neural networks using the
extended Kalman filter approach, providing a principled and practicable approximation to the full
Bayesian treatment. The latter, which constitutes optimal learning, does not require artificial setting
of training parameters and allows for the estimation of a wide range of quantities of interest. We
analyse the performance of the algorithm using tools of statistical physics in several scenarios: we
look at drifting rules represented by linear and nonlinear perceptrons and investigate how different
prior settings affect the generalization performance as well as learnability itself. We investigate
the learning behaviour of stationary two-layer network, where the algorithm seems to avoid the,
otherwise common, problem of long symmetric plateaus.

1. Introduction

Online learning is an important learning paradigm in the context of neural networks, particularly
for nonstationary tasks. A continuous stream of training examples is used for adapting
sequentially a set of parameters, gradually improving the approximation to the underlying rule
realized by the system. This rule is often referred to as the ‘teacher’, whereas the approximating
system is termed ‘student’.

A widely used approach for regression problems is to define an objective measure for the
discrepancy between the desired and the actual output produced by the current estimate of the
rule. The parameters of the student are then updated by gradient descent on this error measure;
the update mechanism is controlled by learning parameters in general and the learning rateη

in particular.
One problem of this ‘ad hoc’ approach is the arbitrary choice of the learning parameters and

learning rules. For example, the optimal learning rate schedule, depends on the characteristics
of the system [1, 2] and is generally not known, so that heuristic estimates have to be used.
For instance, in a noisy but learnable stationary scenario, one has to decay the learning rate to
zero asymptotically, inversely to the number of training examples with a specific prefactor [1].
If, however, the underlying rule is drifting, the learning rate has to stay finite, keeping track of
the changing rule.

Similarly, several advanced and principled training rules have been suggested over the
years (e.g., Newton’s method [3] and natural gradient descent [4]) but there is no clear
understanding as to what is the best method to use in different cases, especially when taking
into account the different computational costs involved.
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Lots of work has been done, using methods of statistical mechanics (for an overview on
theoretical methods in online learning see [5]), on determining locally [6] and globally [2]
optimal learning rate schedule and learning rules [8, 7] and on analysing the properties of
practicable second-order methods [4, 9]. However, these methods are mainly of theoretical
relevance as they require quantities which are unknown during the learning progress.

Another deficiency of current online training methods is that they represent a single
evolution path and they may therefore critically depend on the choice of initial conditions
and will not be able to provide information on statistical properties of the evolving solution,
such as error bars and parameter relevance.

These deficiencies may be handled by the Bayesian approach, which offers a principled
method for following the evolving posterior with respect to the training examples presented,
with no need for artificially choosing learning parameters and rules. Moreover, it constitutes
the optimal learning procedure, if the prior is set correctly, and facilitates the calculation of a
wide range of quantities of interest, such as the posterior mean, error-bar estimation parameter
relevance and more.

Unfortunately, obtaining exact analytical expressions for Bayesian online learning is
unfeasible, and even obtaining approximated expressions via numerical methods such as
Markov chain Monte Carlo [10] is usually impractical. A principled and practicable alternative
is the application of the extended Kalman filter (EKF) to online learning in neural networks.
The EKF has been used to speed up batch learning in [11] and has been introduced in the
online learning of neural nets in [12] and independently in [13] and [14]. The method has
some of the advantages of a Bayesian method: scheduling the learning rate is not required
after the initial setting, it is self-controlled and some statistical properties of the solution may
be calculated. However, as the EKF merely approximates the posterior we cannot expect it
to perform optimally, as one would expect from the exact Bayesian solution, and one should
therefore carefully assess the impact of the approximations on the performance.

We should also point out that online Bayesian approaches have been presented for
classification in [15] and were subsequently studied within the statistical mechanics framework
in [16]. This approach also relies on a Gaussian approximation to the posterior but does not
require the use of EKF techniques.

The scope of this paper is to present the algorithm derived from the EKF approach and to
analyse the learning behaviour in several scenarios using methods of statistical physics. We
will compare its performance to that of non-Bayesian approaches and discuss the effects of
the approximation used.

The algorithm is applicable and efficient in the case of smooth networks. However, it
is of larger time and space complexity in comparison to conventional approaches (O(N2)

instead ofO(N)). We will also formulate and examine a simplified version using isotropic
posterior distributions (and quasi-isotropic in complicated cases), which brings the algorithm’s
complexity back toO(N); this ansatz can be justified asymptotically. The simplified version
will be analysed exactly while the algorithm with the more general posterior will be studied
by numerical simulations.

The paper is organized as follows. Section 2 outlines the EKF approach which is applied
in section 3 to nonstationary feed-forward neural networks. We introduce the explicit update
equations for the cases of linear and nonlinear perceptron and of the soft committee machine
(SCM) [17] as well as a more economical version of the algorithm using quasi-isotropic
posteriors. In section 4 we present the statistical mechanics framework for analysing dynamical
properties of the algorithm and in section 5 we evaluate its performance in three cases: in the
case of the linear drifting perceptron we look at the influence of mismatched prior choices.
In the nonlinear drifting perceptron case we investigate, in particular, how the nonlinearity
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influences the performance and finally we examine the SCM via numerical simulations.
Before moving on to describing the EKF, we would like to explain our notation, as it

comprises conventions used in both neural networks and EKF literature. We need to distinguish
between scalars, column vectors and matrices. For scalars we use lower case letters (e.g.h)
except forN andM which are special scalars denoting the input dimensionality and the number
of hidden nodes respectively. Column vectors are denoted by bold lower case letters (e.g.ξ).
Finally, matrices are denoted by upper case roman letters (e.g. C). Where necessary we state
the dimensionality of quantities explicitly.

We will denote the discrete time indext in two different ways: either as subscript (as inξt )
or in parentheses (as inw(t)). These notations should be considered identical; the former will
be used most of the time for brevity while the latter will be used for main dynamical variables
that will be converted later to variables which depend on a continuous time.

2. The extended Kalman filter approach

As the first step we sketch the general EKF approach. This is meant only as a short summary,
details and explicit derivations of the formulae can be found in the literature, e.g. in [18, 19].
The relevance of the EKF approach to nonstationary neural networks training will be explained
in section 3.

The typical task in the EKF approach [18, 19] is to keep track of a vectorw0 which is
evolving in time due to the general dynamics

w0(t + 1) = v(w0(t),ρt ). (1)

The dimension ofw0 (and thus ofv) isN which also generally is an characterizes the system
size. The functionv is known whereas the vectorρt (of fixed dimensionality depending on
the model) representing some noise is unknown. This means that the dynamics ofw0 has both
deterministic and a stochastic components.

At each time step we get some information about the state of the system given by the
measurement equation

zt = ht (w0(t), ζ t ). (2)

Hereht is time-dependent and known (or assumed to be known) whereas the measurement
noise vectorζ t (of some fixed dimension, depending on the model) is unknown.

The idea is now to represent our knowledge (or belief) about the vectorw0(t) by a
probability distribution and update this distribution at each time step in a Bayesian manner.

To model this probability distribution we will use a unimodal Gaussian posterior
distribution with meanŵ(t) and covariance matrix C(t). The distribution updates can be
separated into two steps. Given the estimatesŵ(t),C(t) at timet we first have to take into
account the movement of the rule vectorw0(t) by definingŵ−(t + 1) and C−(t + 1) to be our
estimates at timet+1beforereceiving the measurement. The second step is then to incorporate
the information obtained from the measurement to getŵ(t + 1) and C(t + 1) as the distribution
parameters at timet + 1 after incorporating information obtained from the measurement.

It is now important to notice that under certain conditions this program can be performed
exactly. For this it is sufficient that the functionsv andht are linear in the weights and the noise
variables (the components of the noise vectorsρ andζ, respectively) and that the distribution
of this noise variable is a (multivariate) Gaussian. Starting att = 0 with a unimodal Gaussian
distribution as the weights prior probability distribution, the exact update of this distribution
leads to a modified unimodal Gaussian again. This corresponds to the Kalman filter estimator.

In the following we will assume the noise variables to be Gaussian and represent the
probability distribution of the weights by a multivariate unimodal Gaussian. The functionsv
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andhwe are interested in are, however, in general, nonlinear. The trick is now to linearize these
functions and perform updates using the linearized versions. The framework is then called the
extendedKalman filter and is only an approximation. The quality of this approximation under
certain conditions will be addressed later on in this paper.

Let us now derive the program outlined so far explicitly. First we linearizev about the
current vectorw and the noise variableρ

v(w +1w,ρ) ≈ v(w, 0) + Vt1w + Pρ (3)

with

Vt = ∇wv|w=ŵ(t)
P= ∇ρv|ρ=0.

(4)

Here, Vt and P areN × N andN × [the dimension ofρ] matrices. The noise variables inρ
are assumed to be Gaussian with zero mean (as nonzero average could be absorbed into the
deterministic part of the dynamics) and covariance

(6ρ)kl = 〈ρkρl〉. (5)

The so-called ‘time update’ due to the evolution of the vectorw0 is then given by

ŵ−(t + 1) = v(ŵ(t), 0)
C−(t + 1) = VtC(t)V

T
t + P6ρPT .

(6)

Note that the linearization is carried out at the mean valueŵ(t) of our current posterior.
The next step is to incorporate the information provided by the measurement. As outlined

before we have to linearizeh:

ht (w +1w, ζ) ≈ ht (w, 0) + Ht1w + Zζ (7)

with

Ht = ∇xht |x=ŵ(t)
Z = ∇ζ ht |ζ=0

(8)

and the noise variance

(6ζ )kl = 〈ζkζl〉. (9)

The dimension of Ht is 1× N (thus a row vector) and of Z is 1× (the dimension ofζ). With
the linearization and the assumption of Gaussian noise we get a Gaussian likelihood term
due to the new example. This is incorporated with the Gaussian prior, based on our current
estimate of the posterior parametrized byw−(t + 1),C−(t + 1), through multiplication and
subsequent normalization of the two Gaussian distributions. As all distributions are Gaussian,
this straightforward procedure results in a Gaussian distribution with new parameters,
corresponding to the ‘measurement update’ in the EKF literature:

ŵ(t + 1) = ŵ−(t + 1) + Kt+1[zt+1− ht+1(ŵ
−(t + 1))]

C(t + 1) = (I − Kt+1Ht+1)C
−(t + 1)

(10)

where the Kalman gain is defined by

Kt+1 = C−(t + 1) HT
t+1[Ht+1C

−(t + 1)HT
t+1 + Z6ρZT ]−1. (11)

The dimension of K isN ×1. Combining the ‘time update’ (6) and the ‘measurement update’
(10) provides the complete update equations from timet to timet + 1.

For a more detailed derivation of the EKF equations we refer the interested reader to, e.g.,
[18, 19].
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3. Application to neural networks

3.1. The model

The task is to utilize the general framework introduced in the previous section for online
learning of an evolving neural network. Although it is certainly not immediately obvious
how to carry this through, it turns out to be straightforward as only reinterpretation of some
quantities is necessary.

In the learning scenario considered here we have an underlying rule (teacher) specified by
an unknown parameter vectorw0, which is to be learned by our model (student). Depending
on the values of these parameters, a known functionf , realized by a neural network, maps an
N -dimensional input patternξt ∈ RN given at timet to a scalar output valuezt ∈ R

zt = f (w0, ξt ) + ζt (12)

whereζt is an additive noise drawn from a Gaussian distribution with zero mean and variance
σ 2
T representing the corruption process. This is termed a measurement in the EKF literature; in

online learning, a single pair(ξt , zt ) of pattern and corrupted teacher response, given at each
time stept , constitutes a training example, and is used to improve our estimation of the teacher
couplings.

In a nonstationary scenario one also has to take into account that the teacher couplingsw0

are time-dependent with

w0(t + 1) = v(w0(t),ρt ) (13)

wherev is some function which is assumed to be known andρt represents a set of random
variables which drive the nondeterministic part of the evolution.

This scenario is often called a student–teacher scenario where the model (student) is trained
on basis of the given examples to be as close as possible to the underlying rule (teacher). It
clearly corresponds to the EKF scenario outlined earlier by comparing equation (12) with
equation (2) and equation (13) with equation (1). We see that these scenarios can be mapped
onto one another if we

• identify the EKF parameter vectorw0 (section 2) with the teacher vectorw0 of section 3.
• identify the functionht in equation (2) with the functionf (with the argumentξt at time
t) in equation (12).
• identify the EKF nonstationarity functionv in equation (13) with the teacher-

nonstationarity functionv in equation (1).
• use for estimating of the studentw a Gaussian distribution specified by a meanŵ(t) and

a variance C(t) as in the EKF approach.

Having done this, the EKF-based learning algorithm can be applied to our problem directly:
we just have to specify our choices forv, ht (given byf andξt ) and the initial conditions
for ŵ and C. The only restriction is thatv andf are smooth functions. We then get update
equations for the online learning scenario directly from equations (6) and (10).

As the weight dynamics for the teacher we will use throughout this paper a random drift
with a constant teacher vector length. So we choose the teacher vectorw0 to be normalized to
one,|w0| = 1 and the nonstationarity to be as in [21]

w0(t + 1) ·w0(t) = 1− δT
N

(14)

where the coefficientδT controls the drift ‘speed’.
The main quantity of interest is the Bayesian generalization error given by

εg(t) = 〈(f (w0, ξ)− 〈f (w, ξ)〉pt (w))2〉ξ (15)
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with pt(w) being the current estimate of the posterior. The outer average is over the set of all
possible patternsξ sampled from some probability distribution, which should be specified for
calculating quantities of interest (e.g., within the statistical mechanics framework).

We have used the same functionf for both teacher and student, reflecting the fact that
we consider them to have the same architecture. It is possible to use different functions,fT
andfS , to reflect the fact that we do not know the teacher architecturefT but assume it to be
described byfS . This enables one to investigate unrealizable and over-realizable scenarios.
In this paper we will restrict ourselves to realizable scenarios.

3.2. Update equations for a single node

We first derive the update equations for the nonlinear perceptron

f (w, ξ) = φ(w · ξ) (16)

where the activation functionφ will be specified later. As described in the previous section
one obtains update equations for each new example(ξt+1, zt+1)—equations (10). Replacing
the general functions in equations (10) and (6) by the specific network (16) and teacher
nonstationarity (14) considered here one obtains

ŵ(t + 1) = ŵ(t) +
φ′(zt+1− φ)

σ 2
S + (φ′)2ξTt+1C(t)ξt+1

C(t)ξt+1 (17)

C(t + 1) = C(t)− (φ′)2C(t)ξt+1ξ
T
t+1C(t)

σ 2
S + (φ′)2ξTt+1C(t)ξt+1

+
2δS
N2

I (18)

whereφ andφ′ denoteφ(ŵ(t)·ξt+1)and its derivative with respect to its argument, respectively.
We have introduced two new variables:σS andδS . Ideally these should be chosen to correspond
to the true noise variances, i.e.σS = σT andδS = δT . However, if the true noise variances
are not known (as is generally the case) one has to use estimated values and for updating the
posterior.

The matrix C in equations (17) and (18) serves, in conjunction with the noise-dependent
denominator, as an effective non-isotropic learning rate (in the eigen system of C one would
have different values for the different eigen directions). This reflects the fact that we might be
pretty certain about the correct value of the weight vector in some directions (narrow posterior)
whereas other directions are still fairly undetermined allowing for larger learning steps in these
directions.

The scaling in this scenario isO(ŵi) ∼ 1/
√
N , O(Cij ) ∼ 1/N andO(ξi) ∼ 1; keeping

the correct scaling is significant as we will take the limitN →∞ later on.

3.3. Update for the soft committee machine

In this architecture the coupling vectorw is fragmented intoM partswl , l = 1 . . .M, with the
definition of the rule being

f (w, ξ) =
M∑
l=1

φ(wl · ξ). (19)

The posterior covariance is

C=


C11 C12 C13 . . .

C21 C22 . . . . . .

C31 . . . . . . . . .

. . . . . . . . . . . .

 (20)
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with Ckl being theN ×N covariance matrix forwl andwk. The update rules become:

ŵl(t + 1) = ŵl(t) + Kl(t + 1)[zt+1− f ({ŵl(t)}, ξt+1)] (21)

Clk(t + 1) = Clk(t) + δlk
1

N2
2δSI − 1

σ 2
S + σ 2

c

∑
m

{[
φ′m
∑
n

φ′nCln(t)(ξt+1ξ
T
t+1)

]
Cmk(t)

}
(22)

with the Kalman gain

Kl(t + 1) = 1

σ 2
S + σ 2

c

∑
n

φ′nCln(t)ξt+1 (23)

the variance

σ 2
c =

∑
kn

φ′kφ
′
nξ
T
t+1Ckn(t)ξt+1 (24)

and using the abbreviation

φ′n = φ′(ŵn(t + 1) · ξt+1). (25)

3.4. Restricted posterior and the isotropic covariance

The algorithm as formulated so far requires the general covariance matrix for calculating
the posterior and is therefore of considerable higher time and space complexity to that of
conventional online learning algorithms like gradient descent. One simplification is to restrict
the space of possible posterior distributions, projecting the actual posterior onto a restricted
space after each update using some suitable distance measure.

We will use here the most simple form for the restricted posterior: an isotropic Gaussian
with the following covariance for the one-node case:

C(t) = η(t)

N
I. (26)

HereI is theN ×N -identity matrix. For the SCM the corresponding ansatz is

Ckl = ηkl

N
I (27)

so each segment of the complete covariance (see equation (20)) is restricted to be isotropic.
There are several reasons for taking this simplified ansatz: the first is that the complexity

is reduced fromO(N2) to O(N) with N being the number of free parameters. On top of
that, if the system is noisy (which is always the case in practice) this ansatz is well justified
asymptotically as the weight error decays with training time with a prefactor proportional to the
Fisher information matrix. Thus, in the cases considered here, the covariance matrix structure
reduces asymptotically to a (quasi) isotropic structure for stationary tasks.

A technical reason for looking at the simplified version is that it is amenable to theoretical
analysis. For the general covariance matrix only the linear stationary case have been solved
so far where batch (e.g., in [20]) and the proposed online scheme are equivalent.

There are many ways to redefine the update rule for this type of restricted posterior. We
choose a straightforward approach: we employ the ansätze (26), (27) in the general update
equations (equations (17) and (18) for the one-node case and equations (21) and (22) for the
SCM). For obtaining consistent updates we have to replace the termξξT in equations (18) and
(22) by an appropriate isotropic matrix, which is carried out by replacing the actualξξT by
its average〈ξξT 〉ξ (meaning that we treat this matrix as self-averaging, which is clearly an
approximation). For preprocessed input data, and in particular for the scenario examined later
on, the general matrix C will then reduce to a constantη (multiplied by the identity matrixI )
for which the update equations can be obtained straightforwardly.
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4. The order parameter dynamics

In the statistical mechanics approach we are interested in the system’s behaviour for large
system sizeN → ∞. In this so called ‘thermodynamic limit’ one can capture the system’s
behaviour by a small set of macroscopic quantities [17, 22] which are sufficient for calculating
the main quantities of interest. These are, for the one-node case in our model, the vector
overlapsQ = ŵ · ŵ, R = ŵ ·w0 andη.

Moreover the order parameters evolve deterministically due to their self-averaging
properties in the thermodynamic limit [23]. The corresponding equations are easily obtained
by constructing the order parameter updates on the basis of the update equations forŵ and C,
applying the limitN →∞ and averaging over the the pattern and noise distributions.

We will assume a pattern distribution (from which the training patterns are drawn) where
each siteξi is chosen randomly fromN (0, 1) (a Gaussian with zero mean and unit variance).
The noise variable is, as specified earlier, a Gaussian variable with varianceσ 2

T and zero mean.
By then introducing the continuous timeα = t/N the evolution of the order parameters

is given by

dQ

dα
= 2η

〈
ŵ · ξ

1φ′

σ 2
S + η(φ′)2

〉
+ η2

〈
12(φ′)2

(σ 2
S + η(φ′)2)2

〉
(28)

dR

dα
= η

〈
w0 · ξ

1φ′

σ 2
S + η(φ′)2

〉
− δT R (29)

dη

dα
= −η2

〈
(φ′)2

σ 2
S + η(φ′)2

〉
+ 2δS (30)

where1 is the difference between the student’s (with weight vectorŵ) and the noise-corrupted
teacher’s response,1 = φ(w0 · ξ) + ζ − φ(ŵ · ξ); the derivativeφ′ is to be taken at̂w · ξ.

The average〈· · ·〉 is with respect to the pattern and noise distribution. The joint distribution
of w0 · ξ andŵ · ξ is entirely determined by their covariance represented by the parameters
Q andR (being a two-dimensional Gaussian), so that the above equations represent a closed
system which can be solved numerically given some initial conditions.

For the SCM we introduce the order parametersQkl = ŵk · ŵl andRkl = ŵk ·w0
l ; it is

straightforward to obtain the following system of ordinary differential equations

dηkl
dα
= 2δklδS −

〈 ∑
nm φ

′
nφ
′
mηknηml

σ 2
S +

∑
nm φ

′
nφ
′
mηnm

〉
(31)

dRkl
dα
=
〈
w0
l · ξ

1
∑

n φ
′
nηkn

σ 2
S +

∑
nm φ

′
nφ
′
mηnm

〉
− δT Rkl (32)

dQkl

dα
=
〈
ŵk · ξ

1
∑

n φ
′
nηkn

σ 2
S +

∑
nm φ

′
nφ
′
mηnm

〉
+

〈
ŵl · ξ

1
∑

n φ
′
nηln

σ 2
S +

∑
nm φ

′
nφ
′
mηnm

〉
+

〈
12(

∑
n φ
′
nηkn)(

∑
n φ
′
nηln)

(σ 2
S +

∑
nm φ

′
nφ
′
mηnm)

2

〉
(33)

where1, also here, is the difference between the noise-corrupted teacher response and the
student response.

5. Numerical results

In this section we employ the statistical mechanics framework for the single node case and
for the SCM (equations (28)–(30) and (31)–(33), respectively) to study analytically and
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Figure 1. For fixedσT = 0.3 andδT = 0.1 the dependency of the asymptotically achieved
generalization error onσS andδS is shown. The combination of largeσS and smallδS proves
most disadvantageous. On the other hand there is a wide range of choices that lead to reasonable
asymptotic values.

numerically the performance of the EKF approach in several scenarios with emphasis on
different aspects.

5.1. The drifting linear rule

The linear case can be analysed exactly; here we assess the algorithm’s asymptotic performance
where sub-optimal prior parameters are selected: more specifically we investigate qualitatively
the influence of the parameter choices forσT , δT , σS, δS .

UsingQ̄, R̄ andη̄ for the asymptotic values we obtain

η̄ = δS +
√
δ2
S + 2δSσ 2

S (34)

and (
Q̄

R̄

)
= −η̄

(
η̄

σ 2
S +η̄
− 2 2− 2η̄

σ 2
S +η̄

0 −η̄ 1
σ 2
S +η̄
− δT

)−1( σ 2
T

σ 2
S +η̄
σT
σ 2
S +η̄

)
. (35)

The generalization error is given byεg = 1 + Q̄ − 2R̄. Figure 1 shows the asymptotic
generalization error dependence on the choice ofσS andδS for the specific choiceσT = 0.3,
δT = 0.1. One can identify areas which are rather insensitive to the parameter choice as
well as areas where poor parameter assignments lead to bad generalization. The latter can
be easily identified as areas where the model undervalues the drift rate and overestimates the
noise variance. The student performs then much too small updates and is lagging behind the
actual state of the drifting teacher.
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Figure 2. The generalization error for EKF- and gradient descent learning (for several values of the
learning rateη) is compared for stationary (left) and nonstationary tasks. The Bayesian approach
shows superior performance while determining the learning rate schedule automatically.

5.2. The nonlinear drifting perceptron

As the EKF approach is based on linearizing the dynamics about the current estimates,
its performance may depend on the accumulated errors due to linearization. These will
presumably depend on the system’s nonlinearity and the drift speed of the underlying rule.
Both aspects will be examined in the current example and compared with the performance of
gradient descent learning.

We focus on the case wereσT andδT are known (settingσS = σT andδS = δT ) fixing the
noise rates toσS = σT = 0.3. As the activation function we introduceφ(x) = erf(ax/

√
2),

where the parametera controls the system’s nonlinearity.
In figure 2 we compare EKF- and gradient descent learning for three fixed learning rates

η, setting the nonlinearity parametera = 1. We see that for a stationary task (left figure)
the learning rate has to be small for good asymptotic results (it actually has to be annealed to
zero asα→∞), which deteriorates the performance at the beginning of the learning process.
Optimal results may be obtained by imposing an explicit and non-trivial learning rate schedule
[2]. For learning the drifting rule there is an optimal asymptotic nonzero learning rate which
is, however, not known. In contrast, EKF learning yields superior results and the choice of the
effective learning rate is done automatically.

We now turn to the adequacy of EKF in the case of nonlinear and drifting rules. As
mentioned earlier, the update equations use a linearization around the actual mean, an
approximation which becomes more inaccurate as the nonlinearity increases and as the
posterior distribution tails become more significant. Therefore, cases with high nonlinearity
and large drifting speed would lead to a bad performance of the algorithm. Varying the
nonlinearity (a) and drift (δT ) parameters allows one to investigate these effects.

Figure 3 shows the learning curves for several values of the nonlinearity parameter values
a = 1, 2, 3 for stationary (left) and nonstationary tasks. The theoretical results show, in
the region investigated, that for drifting rules the asymptotic performance deteriorates with
increasing nonlinearity; for the casea = 3 the generalization error even diverges (simulations
we carried out confirm the theoretical results). This means that there is a transition to a non-
converging phase, depending on the specific system parameters, where the EKF algorithm fails
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Figure 3. The Bayesian generalization error for stationary (left) and drifting tasks (right). Whereas
there is always convergence forδS = δT = 0 this is not the case for drifting concepts: when the
nonlinearity is sufficiently large (herea = 3) the system diverges.

Figure 4. For a fixed noise rateσS = σT = 0.3 there are two phases in thea − δ plane: For large
a andδ the system does not converge to a stationary solution, so the task is unlearnable via the
EKF-algorithm. This is quantified by the phase border shown in the graph.

completely. In figure 4 we depict the phase diagram showing regions in thea–δ plane where
stationary solutions (however bad) are reached (the noise rates are hereσT = σS = 0.3 as
mentioned above).

5.3. Results for a two-node SCM

We now turn to the question how the algorithm works for more complicated networks. The
SCM is a model often looked at in this context.
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Figure 5. We compare EKF and gradient descent learning in the case of a two-node SCM, focusing
on the symmetric phase.

One characteristic effect in such learning machines with inherent symmetries (the role of
the two sub-perceptrons can be swapped) is the occurrence of a symmetric phase [22]: the
student perceptrons do not specialize on the different teacher couplings acquiring a similar
symmetric state. This results in a prolonged phase (showing as a plateau in the evolution of
the generalization error) where only slow learning progress is made until the system escape
the unstable fixed point. There are methods to shorten the plateau: by local [6] optimization of
the learning rule (where, however, unknown quantities are referred to), using natural gradient
descent [4, 8, 9] or just by a heuristic change of the objective function [24].

We will first assess the performance of the quasi-isotropic approach. Figure 5 shows the
evolution of the order parameter for theM = 2 case when the quasi-isotropic covariance
is used, focusing on the symmetric phase and the onset of specialization. The system is
stationary (δS = δT = 0) with noise ratesσS = σT = 0.3 and the teacher perceptrons are
orthogonal and normalized, soTlk = w0

l · w0
k = δlk. The symmetry-breaking happens quite

early, in comparison with the evolution of theR for simple gradient descent where the system
is trapped in the symmetric phase untilα ≈ 200.

However, although the algorithm manages to break the symmetric phase quite early it fails
in another way: theη collapse much too fast, giving an unreasonably narrow posterior which
slows down the asymptotic convergence.

We also investigated the benefit of using a general covariance matrix via numerical
simulations. Figure 6 shows the evolution of the order parameter for the same case as in figure 5,
this time using the general covariance matrix. Surprisingly, there is hardly any symmetric
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Figure 6. Order parameter evolution for the two-node SCM and a general covariance matrix. The
curves are averages over five runs and different curves of same type (e.g.R11, R22) are averaged
over.

Figure 7. Eigenvalue spectrum for learning the SCM (a = 1) with the general covariance matrix.

phase; in the first stage of the learning process the solution heads towards a symmetric fixed
point which is then immediately escaped and specialization begins.

The results in figure 6 were obtained using an input size ofN = 50. However, simulations
with N = 100 andN = 200 did not change the picture significantly, indicating that this
behaviour, of an extremely short symmetric plateau, is not due to finite size effects but is
probably genuine. However, by decreasing the activation function nonlinearity one can see the
emergence of a symmetric phase, as for a linear mapping there is always an optimal symmetric
student (both sub-perceptrons are equal).

To study the properties of the approximated posterior we show in figure 7 a histogram
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Figure 8. Order parameter evolution for the two-node SCM with increased nonlinearitya = 3.

of the covariance matrix eigenvalues atα = 400 obtained from five separate runs (over 500
values). The covariance matrix structure mirrors that of the quasi-isotropic ansatz (27), with
two differentη, η11 = η22 = ηs andη12 = η21 = ηa, which give rise to two eigenvalue types,
ηs − ηa (bigger) andηs + ηa. Both groups are smeared out slightly due to the stochasticity
of the examples, which is less emphasized in the smaller eigenvalue group due to their small
absolute value.

The typical size ofη11 observed is about 6× 10−5 giving a weight uncertainty of
±0.055/

√
N which is consistent with the numerical results obtained atα = 400. However,

in the case of high nonlinearity the algorithm still suffers from a fast-shrinking posterior
distribution, similar to that observed in the isotropic algorithm. In figures 8 and 9 we show
the order parameter evolution and the covariance matrix eigenvalues for the case ofa = 3; the
weight uncertainty here is±0.016/

√
N , which is far too narrow compared with the overlap

reached.
An intuitive explanation for the failure to capture the uncertainty in this case is due to the

approximation used in the EKF approach. The linearization process, on which the method
is based, fails to incorporate all the information provided by new examples, and the student
parameter improvement is smaller than it could have been without the approximation. This
is, however, not registered by the posterior, which narrows down due to the expected (higher)
improvement. The stronger the nonlinearity, the stronger the effect. For the general covariance
matrix the effect occurs later than for the isotropic algorithm; both are affected by this problem,
which is exacerbated by the isotropic ansatz.

In order to compensate for this behaviour one can increase the noise rateσS of the student.
Results are shown in figures 10 and 11 whereσS = 5 is chosen. The narrowing down is
prevented in the expense of some slowing down at the beginning of the process. So there is
a price to be paid for the approximation made within the EKF approach, and not surprisingly
things become more problematic with increasing nonlinearities.



EKF learning in neural networks 1619

Figure 9. Eigenvalue spectrum for learning the SCM with increased nonlinearitya = 3.

Figure 10. We have increased the student noise rate fromσS = 0.3 (figure 8) toσS = 5 to
compensate for the unwanted narrowing down of the posterior. The teacher noise rate is in both
casesσT = 0.3.

6. Conclusions

We have presented an EKF-based Bayesian learning scheme for neural networks learning
regression tasks. This principled approach provides a cheap alternative to the full Bayesian
treatment which is practicable and efficient but still provides some of the main benefits of
the Bayesian scheme. In addition, this algorithm avoids the problem of choosing training
parameters like the learning rate, adapted here automatically, as should be done heuristically
in other learning schemes. Methods from statistical mechanics allow us to analyse the proposed
algorithm and to obtain exact learning curves.

We analysed the performance of the algorithm in several scenarios. Looking at the drifting
linear perceptron we investigated how mismatch between the priors and the true parameters
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Figure 11. The width of the posterior as seen from the eigenvalues is now within reasonable bounds
in the expense of slowing down the learning progress due to the noise rate overestimation.

affects the performance. A reasonable guess of the drift rate and noise variance usually leads
to good performance while, unavoidably, low (assumed) drift speed and a high student noise
variance lead to poor performance as the model associates the drift with noise.

In the case of drifting nonlinear perceptron we investigated the dependence of the
performance on the nonlinearity. We have found a phase transition between learnable and
unlearnable problems depending on drift speed and nonlinearity of the rule to be learned. This
shows analytically the (already known) limitation of the algorithm.

Finally, we found that the symmetric plateaus, which may dominate the SCM training
process, can be almost avoided in the EKF approach if the general covariance matrix is used.
One has, however, to be aware of errors introduced due to the linear approximation which
may result in an improperly narrow posterior. This can partly be compensated for, e.g. by a
suitable increase of the student noise rate, in the expense of training speed due to the increased
uncertainty.

Beside a more exhaustive investigation of models within the given framework there are
several interesting questions for future research. These concentrate on improving the EKF
approximation to deal with highly nonlinear and drifting concepts more efficiently, and on the
question of model evaluation in an online manner [14] in analogy to that of batch learning [25].
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